Popular Posts

Tuesday, July 1, 2025

Class 9 Mathematics - Chapter 01 - Set Theory - Exercise 1.7 Solutions - Book Back Solutions - Samacheer Kalvi Tamilnadu State Board

 



1.     Which of the following is correct?

(1)   {7} {1,2,3,4,5,6,7,8,9,10} (2)     7 {1,2,3,4,5,6,7,8,9,10}

(3)   7 {1,2,3,4,5,6,7,8,9,10}      (4)     {7} Ë {1,2,3,4,5,6,7,8,9,10}

Answer:

(2) 7 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

First option is Set, 7, which not an element, third option given is 7 not an element, but 7 is an element of the given set, and, Fourth option given is, Set, 7 is not a subset of the given set.  But, 7 is an element of the given set, then Set, 7 is a subset of the given set.

 

2.     The set P = {x | x Z, –1< x < 1} is a

(1)   Singleton set                            (2)     Power set

(3)   Null set                                     (4)     Subset

Answer:

(1) Singleton set

When we write the set in Roster form, we get, Set, P = {0}.  Hence, there are only one element in Set, P.  Therefore, it is a singleton set.


 


3.     If U ={x | x N, x < 10} and A = {x | x N, 2 ≤ x < 6} then (A′)′ is

(1)   {1, 6, 7, 8, 9}                           (2)     {1, 2, 3, 4}

(3)   {2, 3, 4, 5}                                (4)     { }

Answer:

(3) {2, 3, 4, 5}

When we write the given sets in Roster form, we get,

Set, U = {1, 2, 3, 4, 5, 6, 7, 8, 9} and, Set, A = {2, 3, 4, 5}

Now A’ = {1, 6, 7, 8, 9}

Hence, (A’)’ = {2, 3, 4, 5}.

4.     If B A then n(A ∩ B) is

(1)   n(A–B)                                     (2)     n(B)

(3)   n(B – A)                                    (4)     n(A)

Answer:

(2) n(B)

We know that, When B A, then A ∩ B = B.

5.     If A = {x, y, z} then the number of non- empty subsets of A is

(1)   8                                                (2)     5     

(3)   6                                                (4)     7

Answer:

(4) 7

Total number of subsets of a set = 2n = 23 = 8.  But, there includes null set also.  When we exclude null set from the number of subset, we get, 7.


 

6.     Which of the following is correct?

(1)   {a, b}                                 (2)     {a, b}

(3)   {a} {a, b}                              (4)     a {a, b}

Answer:

Ø {a, b}

Null set is a subset of every set.

7.     If AB = A∩B, then

(1)   A≠B                                          (2)     A = B

(3)   A B                                        (4)     B A

Answer:

(2) A = B

8.     If B – A is B, then A∩B is

(1)   A                                                (2)     B

(3)   U                                               (4)    

Answer:

(4) Ø

Given B – A = B, then we know that, A and B are disjoint sets.

9.     From the adjacent diagram n[P(AΔB)] is

(1)   8                     (2)     16

(3)   32                  (4)     64

Answer:

(3) 32

A ∆ B = { 60, 85, 75, 90, 70}, n(A ∆ B) = 5, n(P(A ∆ B)) = 25 = 32

10.   If n(A) = 10 and n(B) = 15, then the minimum and maximum number of elements in A ∩ B is

(1)   10,15                                         (2)     15,10

(3)   10,0                                           (4)     0,10

Answer:

(4) (0, 10)

If the two sets A and B are disjoint, then, A ∩ B has no elements.  In the given numbers, there should be maximum of 10 elements in A ∩ B.

11.   Let A = {} and B = P(A), then A∩B is

(1)   { , {} }                                 (2)     {}

(3)                                                  (4)     {0}

Answer:

(2) {Ø}

Given, Set A = Null Set.  Then Power Set P(A) = {, {}}, That is, Set, B = {, {}}.   Now A ∩ B = {Ø}.

12.   In a class of 50 boys, 35 boys play Carrom and 20 boys play Chess then the number of boys play both games is

(1)   5                                                (2)     30

(3)   15                                              (4)     10.

Answer:

(1) 5

Here, Let A be the boys play carrom and Set, B be the boys play Chess.  Total Strength of the class is 50.  That is n(A B) = 50.  n(A) = 35 and n(B) = 20.  We know that, (A B) = n(A) + n(B) – n(A ∩ B) 50 = 35 + 20 – n(A ∩ B) n(A ∩ B) = 5.

13.   If U = {x : x Î N and x <10},  A = {1,2, 3,5, 8} and
B = {2,5,6,7,9}, then n[(A
È B)’] is

(1)   1                                                (2)     2

(3)   4                                                (4)     8

Answer:

(1) 1

Converting the given sets, in Roster Form, We get, U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 3, 5, 8}, and, B = {2, 5, 6, 7, 9}.

A B = {1, 2, 3, 5, 6, 7, 8, 9}.

Now, (A B)’ = {4},

n(A B)’ = 1

14.   For any three sets P, Q and R, P −(Q  ∩  R) is

(1)   P −(Q È R)                               (2)     (P Ç ­Q)−R

(3)   (P −Q) È (P −R)                       (4)     (P −Q) Ç (P −R)

Answer:

(3) (P – Q) (P – R)

We know that, P −(Q  ∩  R) = (P – Q) (P – R)

15.   Which of the following is true?

(1)   A−B = A Ç B                           (2)     A−B = B −A

(3)   (A ­ È B)’ = A’ È­ B’                  (4)     (A  Ç­ B)’ = A’ È B’

Answer:

(4) (A ∩ B)’ = A’ B’

 

16.   If n(A ­È  BÈ  ­C) = 100, n(A) = 4x, n(B) = 6x, n(C) = 5x, n(A ­Ç B) = 20, n(B Ç ­C) = 15, n(A Ç ­C) = 25 and n(A Ç­ B Ç ­C) = 10 , then the value of x is

(1)   10                                              (2)     15

(3)   25                                              (4)     30

Answer:

(1) 10

We know that, n(A B C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(C ∩ A) + n(A ∩ B ∩ C)

Substituting the values, we get,

100 = 4x + 6x + 5x – 20 – 15 – 25 + 10

100 = 15x -60 + 10

100 = 15x – 50

15x = 100 + 50 = 150

x = 10

17.   For any three sets A, B and C, (A−B) Ç  (B −C) is equal to

(1)   A only                                       (2)     B only

(3)   C only                                       (4)     Æ

Answer:

(4) ϕ

As per the derivation, (A−B) Ç  (B −C) = Null Set.


 

18.   If J = Set of three sided shapes, K = Set of shapes with two equal sides and L = Set of shapes with right angle, then J Ç K Ç L is

(1)   Set of isosceles triangles         (2)     Set of equilateral triangles

(3)   Set of isosceles right triangles (4)    Set of right angled triangles

Answer:

(3) Set of isosceles right triangles

19.   The shaded region in the Venn diagram is

(1)   Z −(X ÈY)                               (2)     (X È ­Y) Ç Z

(3)   Z −(X ÇY)                               (4)     Z ­È (X ÇY)

Answer:

(3) Z – (X ∩ Y)

20.   In a city, 40% people like only one fruit, 35% people like only two fruits, 20% people like all the three fruits. How many percentage of people do not like any one of the above three fruits?

(1)   5                                                (2)     8

(3)   10                                              (4)     15

Answer:

(1) 5

 

The Venn Diagram gives you a clear idea of this question. 

40 + 35 + 20 + x = 100%

95% + x = 100%

x = 5%

 

No comments:

Post a Comment

Class 9 Mathematics - Chapter 01 - Set Theory - Exercise 1.7 Solutions - Book Back Solutions - Samacheer Kalvi Tamilnadu State Board

  1.     Which of the following is correct? (1)   {7} ∈ {1,2,3,4,5,6,7,8,9,10} (2)     7 ∈ {1,2,3,4,5,6,7,8,9,10} (3)   7 ∉ {1,2...